2019年9月20日 星期五

【復健觀念】中風復健動作停滯的再思考


Reconsidering the Motor Recovery Plateau in Stroke Rehabilitation

Stephen J. Page, PhD, David R. Gater, MD, PhD, Paul Bach-y-Rita, MD


摘要

        當中風患者進入了慢性期或當對動作復健的反應停滯時,通常就被建議停止復健,管理醫療計畫(Managed-care programs)通常加強此做法對於治療反應差或是最急性的患者身上。當復健運動發生神經肌肉適應時,不該是終止當前的運動計畫,仍有許多技術(例如修正強度嘗試不同的復健內容)來促進神經肌肉的再適應。再介紹動作恢復停滯和適應性的概念後,我們仍會認為中風患者對於治療性運動的適應,但這並不表示減少動作進步的能力。相反地,就像一般傳統的運動情況下,適應狀態一樣可以被克服,藉由修正復健內容(例如強度、引入新的運動內容)。結果顯示,即使慢性中風患者仍然可藉由應用新的復健計畫或不同參數、型式的復健內容,從中獲得改善。以上評論主要是為了:
(1)鼓勵從業人員重新再思考動作恢復停滯的概念。
(2)重新思考慢性中風患者對於恢復動作功能的能力,以及
(3)當復健適應(瓶頸)已經產生,請使用不同的方法。



以下節錄段落重點

        當醫療狀態穩定後,中風患者通常開始接受復健療法如神經發展療法和本體感覺神經肌肉誘發術。對於大多數中風患者,這些療法是經由私人保險、Medicare、或Medicaid等美國醫療保險所支付。然而,管理醫療服務者經常因為患者在特定的時間內,例如在功能性獨立測驗(Functional Independence Measure, FIM)中無法顯示進步,而停止支付治療費用。雖然重複的練習傳達了動作技巧學習的原則,但管理醫療服務者仍會開始限制復健的次數,並且通常只對最急性的中風患者進行補償。

        數據不斷地顯示慢性中風患者(大於一年)在參與不同的復健計畫例如任務型訓練、反覆動作練習後仍會有實質的運動改善,這些發現也讓我們值得重新預期中風後運動恢復的軌跡。就像運動員一樣,反覆執行相同的訓練直到適應,因此我們也可以假設,許多中風患者會達到恢復的停滯期,實際上可能是對於他們的治療方案已經適應。我們的觀點對於這種適應狀態並不能表示運動改善能力下降,這也跟一般人的運動情況一樣。

       許多復健專業人員可能不太熟悉關於神經肌肉適應的數據,主要來自於運動生理學,或是有關中風後期恢復的文獻。因此這篇主要是為了:
(1)鼓勵從業人員以及管理醫療服務者重新思考有關動作恢復停滯的見解
(2)鼓勵從業人員以及管理醫療服務者重新思考慢性中風患者恢復運動功能的能力
(3)鼓勵從業人員使用不同的復健內容當適應(瓶頸)已經產生

我們建議研究人員和從業人員重新思考中風後動作學習如何發生,並且當患者在特定的治療下不再有進步時,如何持續動作學習的發生。


運動後的神經肌肉適應(NEUROMUSCULAR ADAPTATION AFTER EXERCISE)

        這起源於演化生物學,適應一般是指生物系統(身體系統)或單元改變其結構或功能來適應外在的條件或刺激。因此我們使用適應(adaptation)來描述人體藉由體能運動逐步習慣反覆的超負荷(overloading)。
        如前面所述,反覆的身體練習會帶來動作表現的進步,而大部份的進步主要是暫時的、與練習有關的改變(例如心律的增加、血壓的升高、暫時的皮質重組),但如果練習能不斷累積一段時間,就能產生長期的神經肌肉適應。例如在前兩週會因為神經肌肉的連結產生暫時性的肌肉變大(muscle size),然而肌肉肥大(muscle hypertrophy)會藉由阻力訓練約會在四周後產生。
        然而,身體的適應會在一開始訓練時有最大的變化,隨著持續的訓練會開始趨緩。就如同從未參與跑步鍛鍊的人,一開始的肌耐力會顯著提升,但訓練六至八週後,增加的量就不如一開始的顯著。最後,如果鍛鍊方式不改變或修正,運動表現將會達到瓶頸。
        一般適應症候群(General Adaptation Syndrome)可分為三階段,第一階段為警覺期(alarm phase),一個新的壓力(例如阻力訓練)可能會產生過度的酸痛、疲乏並且表現可能會暫時的下降。第二階段為抵抗期(resistance phase),身體開始適應刺激,開始回到正常且更佳的身體功能。第三階段為衰竭期(exhaustion phase),當訓練持續在增加強度最終會達到一個瓶頸並且隨後功能下降。以上是人體為適應刺激發展的過程。適當的刺激能夠讓身體出現抵抗的反應,發展出更強健的能力,但密集且過量的刺激,容易讓身體進入疲憊的階段。


突破瓶頸(Breaking Through the Plateau)

        我們一再地發現表現停滯不代表失去個人的潛能。事實上,在非臨床的族群中,這些瓶頸可經由多樣化的介入來去克服,最有名的例子就是週期化訓練(periodization)。它是一種有計畫的多變化訓練,週期訓練以最終的目的為指導原則,用長期且多變化的方式,在不同的階段達成不同階段的目標,並且用各階段目標累積的效果,來達到最終目標。Rhea et al 比較線性與波段週期肌力訓練計畫,發現舉重選手在波段週期組12周的訓練計畫中有顯著地增加肌力。許多文獻也發線,週期化訓練減輕了表現的瓶頸,透過修正運動強度或改變方式也能改善瓶頸(Plateaus)的現象。


中風的動作恢復(Motor Recovery in Stroke)

        如先前所述,傳統的中風復健在隨機控制實驗中並不有效,此外,大型研究的結果在短期和長期反應也顯示,中風後經過一段時間就不太可能增加功能。最有名的就是過去的哥本哈根腦中風實驗(Copenhagen Stroke Study)。裡面指出動作的恢復在腦傷五個月後不該再期待有所進步。別的研究也說動作恢復大致會在6-12個月內停止進步。這些慣例會造成患者本身不會期待動作的恢復,這些低期待也會造成患者習得無助的情況發生,這種失去希望的感覺會遍及患者生活的其他層面。


中風的適應與週期化訓練(Adaptation and Periodization in Stroke)

        就之前所討論,適應是個常見且經常發生一般人在理想的運動訓練上,當他們生理上要去習慣運動方案時。例如心血管的適應會在有氧運動計畫中,神經肌肉的適應會在阻力訓練或重複的運動訓練中反應。研究中支持包括調整運動強度、運動次數和時間、或改變不同的肌肉使用。
        中風運動療法很大程度上取決於傳統療法的運動原則等概念,例如獨特性治療時間強度和頻率,這些關鍵的考量對於治療效果有其重要性。此外,從中風病人運動中所觀察到的生理反應也與一般人相似,包含改善心肺耐力與增強肌力。事實上,比起一般健康者,年長者仍可以藉由較低強度及較長的時間獲得體適能與功能。
        事實上,許多近期研究結果已經顯示,對於過去認為已經達到瓶頸的慢性中風病人,在參與了任務型功能性訓練、反覆的練習課程中都看到實質上的動作進步。此外,這些復健內容是具有挑戰性,是與初期復健期間不同的訓練方式 — 以下是打破適應性治療的核心特徵

  • 侷限-誘發動作療法(CIMT):強調大量練習患側邊,有兩種方式
    (1) 好側手限制活動,90%的清醒時間,維持兩週。
    (2) 一周五天,每天六小時的患側活動,維持兩週。
  • 由於臨床施行的限制,發展出改良式侷限-誘發動作療法,患側每天30分鐘的功能性練習,並且限制好側每天5個小時,每週五天,持續10周。
  • 功能性任務訓練(Task-specific):每次30分鐘,兩週的伸手取物訓練對於已出院的中風患者有顯著的進步,此能力也能轉移至坐姿及站姿的能力(Dean and Shepherd)。Galea et al 研究報告中發現持續三週,每次45分鐘的上肢功能性訓練,對於所謂達到瓶頸的中風病人的動作功能、靈活度都有進步。其他任務型訓練內容,使用不同的模式或強度,也顯示對於被歸類於沒進步的病人中能獲得進步。

結論(Conclusions)

        當中風患者進入了慢性期或當對動作復健的反應停滯時,通常就被建議停止復健,管理醫療計畫(Managed-care programs)通常加強此做法對於治療反應差或是最急性的患者身上。
        當神經肌肉適應發生在健康成人身上,也不會是終止目前的運動內容,而是改變運動內的參數(例如強度、不同的參數)來促進正向的神經肌肉適應。給予治療性運動更多的變化 — 包括強度、時間、頻率、環境、臨床治療師、甚至是不同種類的運動
        對於中風後的運動仍有許多值得我們持續學習,包括關鍵的復健內容,以及最佳的動作學習及運動,來開啓中風後功能進步的一扇窗。


References
1. American Heart Association. Heart and stroke statistical update. Dallas: AHA; 2003. 
2. Duncan PM, Samsa GP, Weinberger M, et al. Health status of individuals with mild strokes. Stroke 1997;28:740-5. 
3. Dobkin B. The economic impact of stroke. Neurology 1995;45(2 Suppl 1):S6-9. 
4. de Pedro-Cuesta J, Widen-Holmquist L, Bach-y-Rita P. Evaluation of stroke rehabilitation by randomized controlled studies: a review. Acta Neurol Scand 1992;86:433-9. 
5. Duncan PW. Synthesis of intervention trails to improve motor recovery following stroke. Top Stroke Rehabil 1997;3:1-20. 
6. Bobath B. Adult hemiplegia: evaluation and treatment. London: William-Heinemann; 1990. p 1-29. 
7. Voss DE. Proprioreceptive neuromuscular facilitation. Am J Phys Med Rehabil 1967;46:838-95.
8. Herman JM. Present and future patterns of stroke care. Clin Geriatr Med 1986;2:113-9.
9. Newell A, Rosenbloom PS. Mechanisms of skill acquisition and the law of practice. In: Anderson JR, editor. Cognitive skills and their acquisition. Hillsdale: Erlbaum; 1981. p 1-55. 
10. Jorgensen HS, Nakayama H, Raaschou H, Vive-Larsen J, Stoier M, Olsen T. Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil 1995;76:406-12. 
11. Smith GV, Silver KH, Goldberg AP, Macko RF. “Task-oriented” exercise improves hamstring strength and spastic reflexes in chronic stroke patients. Stroke 1999;30:2112-8. 
12. Whitall J, McCombe Waller S, Silver KH, Macko RF. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke 2000;31: 2390-5. 
13. Page SJ. Imagery improves motor function in chronic stroke patients with hemiplegia: a pilot study. Occup Ther J Res 2000; 20:200-15. 
14. Page SJ, Sisto SA, Levine P. Modified constraint-induced therapy in chronic stroke. Am J Phys Med Rehabil 2002;81:870-5. 
15. Page SJ, Sisto S, Levine P, McGrath RE. Efficacy of modified constraint-induced movement therapy in chronic stroke: a singleblinded randomized controlled trial. Arch Phys Med Rehabil 2004;85:14-8. 
16. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 1998;79:1117-23. 
17. Wilson EO. Sociobiology: the new synthesis. Cambridge: Belknap Pr; 1975. 
18. Wilmore JH, Costill DL. Physiology of sport and exercise. Champaign: Human Kinetics; 1999. 
19. Alway SE. Characteristics of the elbow flexors in women bodybuilders using androgenic-anabolic steroids. J Strength Cond Res 1994;8:161-9. 
20. Haggmark T, Jansson E, Svane B. Cross-sectional area of the thigh muscle in man measured by computed tomography. Scand J Clin Lab Invest 1978;38:354-60. 
21. Hakkinen K, Kallinen M, Izquierdo M, et al. Changes in agonistantagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol 1998;84:1341-9. 
22. Hakkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol 2000;83:51-62. 
23. Staron RS, Karapondo DL, Kraemer WJ, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J Appl Physiol 1994;76:1247-55. 
24. Staron RS, Leonardi MJ, Karapondo DL, et al. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol 1991;70:631-40. 
25. Adams GR, Hather BM, Baldwin KM, Dudley GA. Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol 1993;74:911-5. 
26. Ploutz LL, Tesch PA, Biro RL, Dudley GA. Effect of resistance training on muscle use during exercise. J Appl Physiol 1994;76: 1675-81. 
27. Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 1979;58: 115-30. 
28. Deschenes MR, Maresh CM, Crivello JF, Armstrong LE, Kraemer WJ, Covault J. The effects of exercise training of different intensities on neuromuscular junction morphology. J Neurocrytol 1993; 22:603-15. 
29. Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995;377:155-8. 
30. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 1998;79:1117-23. 
31. Sterr A, Muller MM, Elbert T, Rockstroh B, Pantev C, Taub E. Perceptual correlates of changes in cortical representation of fin- 1380 MOTOR RECOVERY, Page Arch Phys Med Rehabil Vol 85, August 2004 gers in blind multifinger Braille readers. J Neurosci 1998;18:4417- 23.
32. Goldreich D, Kanics IM. Tactile acuity is enhanced in blindness. J Neurosci 2003;23:3439-45. 
33. Pantev C, Engelien A, Candia V, Elbert T. Representational cortex in musicians. Plastic alterations in response to musical practice. Ann N Y Acad Sci 2001;930:300-14. 
34. Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed methods training strategy. J Strength Cond Res 1994;16:20. 
35. Garhammer J. Periodization of strength training for athletes. Track Tech 1979;73:2398-9. 
36. Matveyev LP. Periodization of sports training. Moscow: Fiscultura I Sport; 1966. 
37. Rhea MR, Ball SD, Phillips WT, Burkett LN. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res 2002;16: 250-5. 
38. Kraemer WJ, Hakkinen K, Triplett-McBride NT, et al. Physiological changes with periodized resistance training in women tennis players. Med Sci Sports Exerc 2003;35:157-68. 
39. Kraemer WJ, Ratamess N, Fry AC, et al. Influence of resistance training volume and periodization on physiological and performance adaptations in collegiate women tennis players. Am J Sports Med 2000;28:626-33. 
40. Newton RU, Hakkinen K, Hakkinen A, McCormick M, Volek J, Kraemer WJ. Mixed-methods resistance training increases power and strength of young and older men. Med Sci Sports Exerc 2002;34:1367-75. 
41. Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: speci- ficity of repetition maximum training zones. Eur J Appl Physiol 2002;88:50-60. 
42. Parker VM, Wade DT, Langton-Hewer R. Loss of arm function after stroke: measurement, frequency, and recovery. Int Rehabil Med 1986;8:69-73. 
43. Newman M. The process of recovery after hemiplegia. Stroke 1972;3:702-10. 
44. DeLisa J, Gans B, Bockeneck WL. Rehabilitation medicine: principles and practice. Hagerstown (MD): Lippincott, Williams, & Wilkins; 1999. 
45. Bach-y-Rita P, Bach-y-Rita E. Hope and active patient participation in the rehabilitation environment. Arch Phys Med Rehabil 1990;71:1084-5. 
46. Peterson C, Maier SF, Seligman ME. Learned helplessness: a theory for the age of personal control. Oxford: Oxford Univ Pr; 1993. 
47. Iwasaki KI, Zhang R, Zuckerman JH, Levine BD. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit? J Appl Physiol 2003;95:1575-83. 
48. Bompa TO. Periodization: theory and methodology of training. Champaign: Human Kinetics; 1999.
49. Keith RA. Treatment strength in rehabilitation. Arch Phys Med Rehabil 1997;78:1298-304. 
50. National Center for Medical Rehabilitation Research. Timing, intensity, and duration of rehabilitation for hip fracture and stroke. Bethesda: National Institutes of Health; 2001. 
51. Macko RF, Smith GV, Dobrovolny CL, Sorkin JD, Goldberg AP, Silver KH. Treadmill training improves fitness reserve in chronic stroke patients. Arch Phys Med Rehabil 2001;82:879-84. 
52. Wolf S, LeCraw DE, Barton LA, Jann BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 1989; 104:125-32. 
53. Taub E, Miller NE, Novack TA, et al. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993; 74:347-54. 
54. Miltner W, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 1999;30:586-92. 
55. van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 1999;30:2369-75. 
56. Schaumburg S, Pierce S, Gaffney K, Gershkoff A. Constraintinduced therapy: moving research into practice. Paper presented at: The annual meeting of the American Congress of Rehabilitation Medicine; 1999 October 16; Orlando (FL). 
57. Page SJ, Levine P, Sisto S, Bond Q, Johnston MV. Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clin Rehabil 2002;16:55-60. 
58. Page SJ, Sisto SA, Johnston MV, Levine P, Hughes M. Modified constraint induced therapy in subacute stroke: a case study. Arch Phys Med Rehabil 2002;83:286-90. 
59. Page SJ, Sisto SA, Johnston MV, Levine P, Hughes M. Modified constraint induced therapy: a randomized, feasibility and efficacy study. J Rehabil Res Dev 2001;38:583-90. 
60. Dean CM, Shepherd RB. Task-related training improves performance of seated reaching tasks after stroke. A randomized controlled trial. Stroke 1997;28:722-8. 
61. Galea MP, Miller KJ, Kilbreath SL. Early task-related training enhances upper limb function following stroke. Poster presented at: The annual meeting of the Society for Neural Control of Movement; 2001; Seville (Spain). 
62. Winstein CJ, Rose DK, et al. Recovery and arm use after stroke [abstract]. J Cerebrovasc Dis 2001;10:197. 
63. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003;84:915-20. 
64. Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000;31:1210-6. 
65. Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF. Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil 2002;83:1703-7.



1 則留言:

腳踏車訓練建議參考